
Försättsblad till skriftlig
tentamen vid Linköpings Universitet

Datum för tentamen 2009-12-22
Sal

U11

Tid

14-18

Kurskod

TDDC90

Provkod

TEN1

Kursnamn/benämning

Software Security

Institution IDA
Antal uppgifter som
ingår i tentamen

10

Antal sidor på tentamen (inkl.
försättsbladet)

6

Jour/Kursansvarig Shanai Ardi/Nahid Shahmehri
Telefon under skrivtid 282608
Besöker salen ca kl. 15:00, 16:30
Kursadministratör
(namn + tfnnr + mailadress)

Madeleine Häger
282360, madha@ida.liu.se

Tillåtna hjälpmedel

Tryckt ordlista

Övrigt
(exempel när resultat kan ses
på webben, betygsgränser,
visning, övriga salar tentan
går i m.m.)

LiTH, Linköpings tekniska högskola
IDA, Institutionen för datavetenskap
Nahid Shahmehri

Written exam

TDDC90 Software Security

2009-12-22

Permissible aids
Dictionary (printed, NOT electronic)

Teacher on duty
Shanai Ardi, 013-282608

Instructions
The exam is divided into two parts with a total of ten questions. You should answer
all questions in all parts. In order to get the highest grade you will need sufficient
points in the second part.

You may answer in Swedish or English.

Grading
Your grade will depend on the total points you score on the exam. The following
grading scale is preliminary and might be adjusted during grading.

Grade 3 4 5

Points required 18 24 30

Important

In order to get the highest grade you must have scored at least six points in part 2.

Part one

Question 1: Static analysis (2 points)

An analysis can be said to be sound. Explain what sound means in this context.

Question 2: Vulnerabilities (2 points)

Explain what a race condition vulnerability is. Give an example of code containing a
race condition vulnerability.

Question 3: Common Criteria (2 points)

What is the purpose of the Common Criteria, and how can a developer benefit from
it?

Question 4: CMM (2 points)

What is the capability maturity model, and how does it relate to security?

Question 5: Fuzz Testing (4 points)

The following C code calculates the line equation (in the form y = ax + b) for the line
that intersects two points p1 and p2. For some inputs, the program will crash.

struct line { int a, b; };
struct point { int x, y; };

struct line *create_line(struct point p1, struct point p2) {
 struct line *l = malloc(sizeof(struct line));
 l.a = (p2.y - p1.y) / (p2.x - p1.x);
 l.b = p1.y - l.a * p1.x;
 return l;
}

Is fuzz testing using random inputs for p1 and p2 likely to detect the problem?
Motivate your answer. If your conclusion is that fuzz testing is unlikely to detect the
problem, then discuss how this kind of problem could be overcome in fuzz testing.

Question 6: Best Practices (4 points)

Name and describe four security best practices that can be used in secure software
development and explain how they can improve security.

Question 7: Secure Design Patterns (4 points)

Explain one secure design pattern in detail. You may choose any pattern except
privilege separation (also known as PrivSep).

Question 8: Threat Modeling (4 points)

Explain what abuse/misuse cases are used for. Clarify your answer through an
example.

Part two

In order to score well on these questions you will need to show that you understand
not only the technical issue or concept at hand, but also its context and its interactions
with its context (e.g. processes, methods, techniques, technology, people, risks,
threats, and so on). We think that good answers to these questions will require at least
one or two handwritten pages (more or less may be required depending on how you
write).

Question 9: Threat Modeling (6 points)

Explain what attack trees are. Through an example show how they are created and
how they can be used.

Question 10: Vulnerabilities (6 points)

The function shown on the last page of this exam (read_ppm) parses a portable
pixmap image file. A PPM file consists of a “magic number”, followed by the image
dimensions, color depth, and finally the image data. Each pixel of image data is either
three bytes or six bytes long, depending on the color depth.

The read_ppm function below works quite well for normal PPM files, but contains at
least two vulnerabilities that can be exploited using files with carefully chosen
contents.

For each vulnerability:

- Indicate the code that contains the vulnerability.

- Explain the input that could trigger the vulnerability (you do not need to
explain how to exploit it).

- Propose corrections to the code that would eliminate the vulnerability.

- Name and explain any mitigation techniques in the compiler, libraries or
operating system that could prevent the vulnerabilities from being exploited.

Code for question 10

struct image *read_ppm(FILE *fp)
{
 int version;
 int rows, cols, maxval;
 int pixBytes=0, rowBytes=0, rasterBytes;
 uint8_t *p;
 struct image *img;

 /* Read the magic number from the file */
 if ((fscanf(fp, " P%d ", &version) < 1) || (version != 6)) {
 return NULL;
 }

 /* Read the image dimensions and color depth from the file */
 if (fscanf(fp, " %d %d %d ", &cols, &rows, &maxval) < 3) {
 return NULL;
 }

 /* Calculate some sizes */
 pixBytes = (maxval > 255) ? 6 : 3; // Bytes per pixel
 rowBytes = pixBytes * cols; // Bytes per row
 rasterBytes = rowBytes * rows; // Bytes for the whole image

 /* Allocate the image structure and initialize its fields */
 img = malloc(sizeof(*img));
 if (img == NULL) return NULL;
 img->rows = rows;
 img->cols = cols;
 img->depth = (maxval > 255) ? 2 : 1;
 img->raster = (void*)malloc(rasterBytes);

 /* Get a pointer to the first pixel in the raster data. */
 /* It is to this pointer that all image data will be written. */
 p = img->raster;

 /* Iterate over the rows in the file */
 while (rows--) {
 /* Iterate over the columns in the file */
 cols = img->cols;
 while (cols--) {
 /* Try to read a single pixel from the file */
 if (fread(p, pixBytes, 1, fp) < 1) {
 /* If the read fails, free memory and return */
 free(img->raster);
 free(img);
 return NULL;
 }

 /* Advance the pointer to the next location to which we
 should read a single pixel. */
 p += pixBytes;
 }
 }

 /* Return the image */
 return img;
}

Notes on the code for those not very familiar with C
fscanf reads from a file to a program variable. The second argument specifies the
input format. For example, fscanf(fp, " P%d ", &version) reads zero or more
whitespace characters followed by an uppercase “P”, followed by an integer. The
value of the integer is stored in the variable named version. The fscanf function
returns the number of items it read successfully.

malloc allocates memory on the heap. The parameter to malloc specifies how much
memory can be allocated. Memory allocated with malloc is returned to the heap using
the free function. When malloc fails to allocate sufficient memory, it returns NULL.

The data type image has four fields, rows, cols, depth and raster. When initialized,
rows contains the number of rows in the image, cols the number of columns, and
depth is either 1 or 2, indicating how many bytes are used to represent a single color
value. The raster field contains a pointer to a memory area on the heap that holds all
the pixel values. Each pixel value is a sequence of three color values.

The fread function reads raw bytes from a file. In this function it is used to read the
image data, one pixel (i.e. 3 or 6 bytes) at a time. It returns the number of items read
(in this function, the number of pixels). Specifically, the function call fread(p,
pixBytes, 1, fp) will read one item that is pixBytes long from the file pointed to by
fp, and store that item in the memory location pointed to by the variable p.

The sizeof operator returns the size of something. For example, sizeof(int) will
return the number of byte required to store an integer, and assuming img is a pointer
to a struct image, sizeof(*img) will return the number of bytes required to store
an image structure.

